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ON THE IMPLEMENTATION OF MIXED METHODS 
AS NONCONFORMING METHODS 

FOR SECOND-ORDER ELLIPTIC PROBLEMS 

TODD ARBOGAST AND ZHANGXIN CHEN 

ABSTRACT. In this paper we show that mixed finite element methods for a fairly 
general second-order elliptic problem with variable coefficients can be given a 
nonmixed formulation. (Lower-order terms are treated, so our results apply also 
to parabolic equations.) We define an approximation method by incorporating 
some projection operators within a standard Galerkin method, which we call a 
projection finite element method. It is shown that for a given mixed method, 
if the projection method's finite element space Mh satisfies three conditions, 
then the two approximation methods are equivalent. These three conditions 
can be simplified for a single element in the case of mixed spaces possessing 
the usual vector projection operator. We then construct appropriate noncon- 
forming spaces Mh for the known triangular and rectangular elements. The 
lowest-order Raviart-Thomas mixed solution on rectangular finite elements in 
R2 and R3, on simplices, or on prisms, is then implemented as a nonconform- 
ing method modified in a simple and computationally trivial manner. This new 
nonconforming solution is actually equivalent to a postprocessed version of the 
mixed solution. A rearrangement of the computation of the mixed method so- 
lution through this equivalence allows us to design simple and optimal-order 
multigrid methods for the solution of the linear system. 

1. INTRODUCTION 

We consider the following elliptic problem for u on the bounded domain 
Q c Rn, n = 2 or 3, with boundary OQ = Fl U F2, rl n r2 = 0 

(I.la) V.o+du=f inQ, 
(I.lIb) a = -a(Vu + bu - c) in Q2, 
(1.1C) u = -g on l1, 

(I.ld) cT v =O onE2, 

where a(x) is a uniformly positive definite, bounded, symmetric tensor, b(x) 
and c(x) are bounded vectors, d(x) > 0 is bounded, f(x) e L2(Q), g(x) E 
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H2 (Q) (Hk (Q) = Wk 2(e) is the Sobolev space of k times differentiable 
functions in L2(Qi) ), and v is the outer unit normal to the domain. Let ( *, * )s 
denote the L2(S) inner product (we omit S if S = Ql). Assume that the 
problem is coercive in the sense that there is a positive constant K such that 
for any v E (L2(Q))n and w e L2(Q), 

(1.2) (a-lv, v) + (bw, v) + (dw, w) > K{IIVII1L2(Q))n + (dw, w)} 

(this immediately implies that if d = 0 a.e. on a set S, then b = 0 a.e. on S). 
Assume also that if ri = 0, then d > 0 on some set of positive measure, so 
that if v = -a(Vw + bw - c), then a generalized Poincare inequality gives us 
control over w. 

Problem (1.1) is recast in mixed form as follows. Let 

H(div; Q) = {v E (L2(2))n : V * v E L2(Q)} 
V ={v e H(div; Q) :v ii = 0 on f2}, 

W =L2(Q). 

Then the mixed form of (1.1) for the pair (a, u) e V x W is 

(1.3a) (V a, w) + (du, w) = (f, w), Vw E W, 

(1.3b) (a-la, v) - (u, V - v) + (bu, v) = (c, v) + (g, v - V)r1, Vv E V. 
In 1985, Arnold and Brezzi [1] showed that if b = c = d = 0, and n = 2, 

the mixed finite element methods for the even-order Raviart-Thomas spaces 
defined over triangles are equivalent to certain nonconforming methods. In 
particular, the lowest-order Raviart-Thomas space defined over triangles [21] is 
equivalent to a simple modification of the PI -nonconforming Galerkin method. 
This nonconforming method yields a symmetric and positive definite problem 
(i.e., a minimization problem), whereas the mixed formulation is a saddle point 
problem. 

Marini [18] noted that the computational cost of this modification is almost 
nil, if a is a piecewise constant scalar. This equivalence has been exploited to 
obtain optimal L??(Q)-error estimates for the mixed method [16]. Recently, 
Brenner [4] has used the equivalence to define and atialyze an optimally conver- 
gent multigrid method. Chen [9, 1 1] has derived some nonconforming methods 
that are equivalent to certain lower-dimensional mixed methods, and exploited 
superconvergence properties to obtain a better approximation to the scalar vari- 
able. 

Analogous equivalences for problems with nonzero low-order terms or for 
problems posed in higher dimensions (say n = 3) have not been shown. It is 
necessary to obtain an equivalence for d - 0 to treat time-dependent, parabolic 
problems. Moreover, an equivalence has not been shown for rectangular mixed 
methods, even though they are used widely in practice. We consider such prob- 
lems in this paper, concentrating on the case of the lowest-order Raviart-Thomas 
mixed method defined over rectangles or rectangular parallelepipeds. An outline 
of the paper and a summary of our results follows. 

We begin in ?2 with the development of a general theory on the equivalence 
of mixed and nonconforming methods. Our theory is similar to, but more gen- 
eral than, that developed earlier by one of the authors [1 1]. We generalize the 
results of Arnold and Brezzi [1] in defining a nonconforming method for some 
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finite element space Mh. It is a Galerkin method with the addition of some 
special projection operators, and hence we will call it a projection finite ele- 
ment method. We then develop three conditions on Mh that are sufficient to 
imply the equivalence of the projection method to a given mixed method. In 
?3 we consider the problem of constructing finite element spaces that satisfy 
these three conditions. We derive a simple local criterion that guarantees the 
equivalence in the case of mixed spaces possessing the usual vector projection 
operator. In ??4 and 5, we use this general theory to define equivalent projec- 
tion methods for various mixed methods for the problem (1.3). We treat the 
mixed spaces of Raviart and Thomas [21], Nedelec [19], Brezzi, Douglas, and 
Marini [8], Brezzi, Douglas, Duran, and Fortin [6], and Brezzi, Douglas, Fortin, 
and Marini [7] defined over triangles or rectangular parallelepipeds in R2 and 
R3. Our nonconforming spaces perhaps illuminate some of the relationships 
between these mixed spaces. We point out that projection finite element spaces 
are not necessarily unique, since two such spaces are known for the lowest-order 
Raviart-Thomas space over triangles: the one defined by Arnold and Brezzi [1] 
uses cubic "bubble functions" while the one defined by Chen [ 11 ] uses quadratic 
bubble functions. 

Then, for several sections, we restrict our attention to the lowest-order 
Raviart-Thomas mixed method on rectangles. In ?6, our general projection 
space is shown to have a nice structure. It is a simple augmentation of a stan- 
dard nonconforming Galerkin space with P2-bubble functions. These bubble 
functions are orthogonal in some sense to the standard nonconforming part of 
the solution. Diagonal a and a modification to the mixed method, in which 
the coefficients are projected into the space of piecewise constants, allows us to 
exploit this fact. We can therefore give an explicit expression for the bubble 
function corrections (see formula (6.9) below), and so the method is easily im- 
plemented. A trivial postprocessing of its solution recovers the mixed solution. 
However, the nonconforming solution has better convergence properties than 
the mixed solution in that the scalar variable is approximated to the optimal or- 
der two (see ?7). Alternatively, we may view the nonconforming solution as an 
approximation to u obtained by a special postprocessing of the mixed solution. 

This equivalence is exploited in ?8 to derive optimal-order multigrid algo- 
rithms for the mixed and nonconforming methods. Unlike the multigrid al- 
gorithm imposed in [4] for the lowest-order Raviart-Thomas mixed triangular 
finite element method, our multigrid algorithms are based on standard noncon- 
forming finite element methods. The bubble functions can be handled separately 
in the computations because of the orthogonality; in fact, the mixed method so- 
lution can be obtained without the need to obtain multigrid approximations to 
the bubble functions. The convergence of the multigrid algorithms is shown in 
the appendix. 

The above results will be shown explicitly in two space dimensions, We 
will extend them to the three-dimensional case of mixed methods defined over 
rectangular parallelepipeds in ?9, and also in an analogous way to simplices and 
prisms in ??1O and 11. 

Problem (1.1) arises in many practical applications. We note only that the 
simple formula (6.5) given below for the calculation of the flux variable a is 
very useful in calculations and in obtaining a priori estimates for the numerical 
electric fields of semiconductor devices [12]. 
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2. EQUIVALENT PROJECTION FINITE ELEMENT METHODS 

To define a finite element method, we need a partition ?h of Q into elements 
E, say, simplexes, rectangular parallelepipeds, and/or prisms, where only edges 
or faces on an may be curved. In ?h, we also need that adjacent elements 
completely share their common edge or face; let a^* denote the set of all 
interior edges ( n = 2 ) or faces ( n = 3 ) e of th . We tacitly assume that 
09 h 0 . Finally, each exterior edge or face has imposed on it either Dirichlet 
or Neumann conditions, but not both. 

Let Vh x Wh c V x W denote some standard mixed finite element space for 
second-order elliptic problems defined over ?h such that V. Vh = Wh (see, e.g., 
[6, 7, 8, 13, 19, and 21]). This space is finite-dimensional and defined locally on 
each element E E ?h, so let Vh (E) = Vh IE and Wh (E) = Wh IE . The constraint 
Vh c V says that the normal components of the members of Vh are continuous 
across the interior boundaries in 0?h . Following [1], we relax this constraint 
on Vh by defining 

Vh = {V E L2): VIE E Vh(E) for each E E E*}. 
We then need to introduce Lagrange multipliers to enforce the required conti- 
nuity on Vh, so define 

Lh = {e L(U2 ( e): AleeVh*le for each e E a'h} 
eEO9' 

The mixed finite element solution of (1.3) is (ah, Uh) E Vh x Wh satisfying 

(2.1a) (V *h, w)+ (dUh,W) =(f, w), VweWEWh 

(2.1b) (a-lah, v)-(uh, V *v) +(buh, v) =(c, v)+(g, v *v)r-, VV eVh. 

It has a unique solution by (1.2). The unconstrained problem is to find 
(ah Uh, A)E Vh x Wh x Lh such that 

(2.2a) E h (V*h W)E + (dUh , W) = (f,5 W), V h 

EE?'h 

(a- oah, v) - E: [(Uh, V)E -(Ah,9 V * VE)aE\,Ya] + (buh , V) 
(2.2b) EE h 

=(c, v)+(g, v*v)r,, VV E Vh, 
(2.2c) (a,h VE, U)OE\OQ = 0 5V s E Lh- 

EE?h 

Note that ah and uh are identical in the two formulations, since (2.2c) enforces 
a,h E V*. 

We need some projection operators. Let .9wh L2(Q) -4 Wh denote L2(Q)- 
projection: For qE eL2(Q), 

(2.3) ((-9w,p,W)=0, VWE Wh. 

Similarly let .@Lh: L2(UeEO e) Lh be L2(UeEo e)-projection. To handle 
variable a(x), we introduce the weighted (L2(,))n-projection 'vh(L2())n 

Vh defined by 

(2.4) (a-I(9- 7vh ),v)=O, Vv VE . 
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Note that each of these operators is defined locally on each E E ?h or on each 
e E O9h, since only Vh has a continuity constraint. 

We define now in an abstract sense our projection finite element method. 
Let Mh denote some as yet unspecified finite-dimensional finite element space 
defined over ?h such that the degrees of freedom of Mb r, vanish. We seek 
Vh E Mh - g satisfying 

Z (3vb [a(V Vh + bwh 'h C)], Vg)E + (dLw, Vhh 'wh) 
(2.5) EEh 

= (f, Ywh), V E Mh. 

Our goal is to define Mb so that 

(2.6a) ah = -vh [a(V V/h + b'h Vhb - c)J, 

(2.6b) Uhb= iW V/h, 

(2.6c) 'h = Lh V/b. 

The first requirement is that Mh give rise to a legitimate finite element 
method defined by (2.5); hence, we require that there exists a unique solu- 
tion to the problem. Since (2.5) is a square linear system, uniqueness implies 
existence. For uniqueness, if lh E Mh satisfies 

E (Ovh [a(V Vh + bwhV h)I V)E + (d3W' wh IAWh )=O V0 E Mhb 
EE?h 

then we need to show that Vh = 0. Take g = V, note that by (2.4), 

(19vh(aVV/h), VV/h)E = (alKvh(aVV/h), aVVh)E 

= (a' 10vh (aVghb), ?Avh(aVVh/))E, 

(vh (ab7wh vh/), V Vhb) E = (a vh (ab 9wh Vh), aV Vlh) E 
= (b.YAwh V/hy _Ovh(aV Vh)) E 

and then apply coercivity (1.2) to conclude that both IISYvh(aV Vh) (L2(i)" = 0 

and (dSAwh V'h 3 YWh V/h) = 0 . The former requires that the Av -projection of 
a7V /h be zero on each E E ?h 

(a'aVy Vh, V)E = 0, VV E Vh(E). 

We therefore require of the space Mh the first condition: 

(Cl) Forg E Mh,if (V, V)E =0 forall ye Vh(E) andallE e Fh, and 
if (dYw,, Ywh4) = O, then g=O. 

In order that (2.6c) makes sense, we require that 

(C2) For g E Mh, its projection Y9L,g can be uniquely defined on each 
e E aO.h 

We can consider now the equivalence of the two schemes (2.2) and (2.5). It is 
convenient to take V/h as given by (2.5) and let *h, Uh, and Ah be given by 
(2.6). We then show that (2.2) results. 
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By the definitions (2.6), definitions (2.3) and (2.4), and finally integration by 
parts, we see that for any v e rh, 

(a ah, V)- E [(Uh, V - V)E-(Ah, V * VE)OE\00] + (buh, V) 
EE?h 

= -(a YAhv[a(Vyh + b-9Aw,h - c)], v) 

E [(Ah Wh, V*V)E - (Lh qIh, V * VE)OE\on] + (b"wh v/h, v) 
EEth 

(2.7) E (V th + bO.?wh -C , V)E 
EE?h 

- ZE[(vh, V*V)E-(lh, V VE)OE\80] + (bAwhyIh, v) 
EE9h 

= >E [-(7Vgh-C, V)E + (Vh, V)E].+ (g, v. V )F 
EE?h 

= (c, v) + (g, v * .)r; 
this is (2.2b). 

For (2.2a)and (2.2c), we integrate the first term on the left-hand side of (2.5) 
by parts to see that for any e Ma, 
(2.8) 

Z (.Ovh[a(V yh + b.AwhVIh -c)] V7)E = [(V h, ()E-(COh * VE, g)OE] 
EEh EE?h 

hence, introducing two projection operators, (2.5) becomes 
Z (V * ah, 'YW)E + (dUh, aWh4)- E (Oh * VE v -9L)OE\8S2 

(2.9) EE?h EEh 

=(f,9Awfc), VXE Ma, 
where ??Lh4 on OE is defined on the trace of 4 from within E. To separate 
information on OE from that in E, we require the third condition on Mh: 

(C3) For any (w, 1u) E Wh x Lh, there exist 4I, 42 E Mh such that 

(i) {W 8D 4 w and (ii) { 2 0 

The 41 gives us (2.2a) while the 42 gives us (2.2c). 
Since any uh and la can arise as a solution to (2.2) by adjusting the data, 

condition (C3) is also necessary for the equivalence. We have shown the fol- 
lowing theorem. 

Theorem 1. For a given mixed finite element method (2.1) or (2.2) such that 
Wh = V * Vh, the projection finite element method (2.5) is well defined if, and 
only if, Mh satisfies (Cl). Moreover, if Mh satisfies (Cl) and (C2), these two 
methods are equivalent by the relations (2.6) if and only if, Mh satisfies (C3). 
Theorem 2. If a given projection finite element method (2.5) with projection space 
Vh (and Wh = V. Vh and Lh defined from Vh) satisfies (C1)-(C3) and the 
property that for any 4 E Mh such that 9L,J = 0, 

(2.10) sup EEI(F(VI V)E > KhII39Wh4lL2(Q) 
VEVh\{O} IIVII(L2(Q))n 
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for some Kh > 0, then Vh gives rise to an equivalent mixed method (2.1) or 
(2.2) for which Vh and Wh satisfy the inf-sup condition [5] for the constant Kh: 
For any W E Wh, 

supO (V*V, W) > Kh11W11L2(a). VEVh\{O} 11V11I(L2(n))n 

Moreover, if (2. 10) holds uniformly in h, i.e., Kh = K is independent of h, then 
also the inf-sup condition holds uniformly in h. 
Proof. For W E Wh, we can choose by (C3) 4 e Mh such that 9Wh' = -W 

and ALh4 = 0. For this X, (2.10) is the inf-sup condition after an integration 
by parts. 0 

3. ON THE LOCAL CONSTRUCTION OF Mh 

It is not yet clear whether an appropriate Mh can be constructed for a given 
mixed method. In this section we consider the question of how to construct 
such an Mh . We do not discuss problems associated with the outer boundary 
of the domain, but instead concentrate on the local spaces defined on some 
E E ?h with edges or faces e E a dh. 

We begin by noting that dimensional considerations for satisfying (Cl) and 
(C3) easily show the following corollary of Theorem 1, wherein Mh (E) = Mh IE 
and Lh(e)=LhIle. 

Corollary 1. If a given mixed finite element method (2.1) or (2.2) (with Wh = 

V - Vh) is equivalent to the projection finite element method (2.5) by the relations 
(2.6), then, for each E E ?h such that aE n a2 = 0, 

dim(Wh(E)) + Z dim(Lh(e)) < dim(Mh(E)) < dim(Vh(E)) + 1. 
eCOE 

The left-hand side of the inequality follows from (C3), and the right-hand 
side from (Cl). This result can be used to bound the dimension of Mh(E); it 
may even show that Mh(E) cannot exist for some novel mixed methods. 

We now localize the condition (Cl) as follows: 
(Cl' ) For 4 E Mh(E), if (V4, v )E = 0 for all V E Vh(E), then 4 is constant 

on E. 

Theorem 3. Suppose that Vh x Wh is a mixed finite element space such that 
Wh= V * Vh, I e Wh(E) for each E E ?h, and 1 E Lh(e) for each e e a.h . If 
Mh satisfies (C ') for each E e ?h and (C2), then Mh satisfies (C1). 

Proof. For some 4 E Mh, suppose that (VW, V)E = 0 for all V E Vh(E) and 
E E &h, and (d.YAwh , AWh ) = 0 . We conclude from (C ') that 4 is constant 
on each E. Since (C2) requires a unique definition of '94I in fact 4 is a 
constant on all of Q2. Finally, either rF $ 0 or d > 0 implies that 4 = 0. 0 

The mixed method spaces that we consider have the property that there exists 
a projection operator rlh: (HI (E))- Vh(E) such that 

(3. lb) V(FIv) / = L,h (V - v) 

We exploit this fact in the following way. 
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Theorem 4. Suppose that E is convex and that Vh (E) x Wh (E) is a mixed finite 
element space such that Wh(E) = V * Vh (E), 1 E Wh(E), 1 E Lh(e) for each 
e c aE, and there exists an operator rh : (HI(E))n __ Vh(E) satisfying (3.1). 
If Mh (E) is a space offunctions such that 

dim(Mh(E)) = dim(Wh(E)) + Z dim(Lh (e)) 
eCOE 

with unisolvent degrees offreedom described by 
(DF1) (4,W)E for all w in a basis of Wh(E), 
(DF2) (Y, ,u)e for all ,u in a basis of Lh(e), for each e c aE, 
and if Mh (E) contains the constant functions, then Mh (E) satisfies (C l '), (C2), 
and (C3). 
Proof. The hypotheses (DF) give (C2) and (C3), so we need only show (Cl '). 
Let As((p) = (q, l)sl(l, I)E denote a type of average of a function p(x) on 
S c E. For 4 E Mh(E), if C = 4 - AE(,) and 

(3.2) (V4, V)E = (VC, V)E = -(C, V * V)E + , (v, V * Z)e = 0 
eCOE 

for all v E Vh(E), then we need to show that 4 = 0. 
Given any w E Wh, there is some v) E Vh such that V * ) = w . Solve the 

problem 

A9p = AaE(iV * v) in E, 
V*v =i'*v onaE, 

and set v = v - rIhV E Vh. Then (3.1) implies that v * v = 0 on aE and 
V * v = w - AOEQiJ * z) . As a consequence, (3.2) implies that .Aw,4' = 0. 

Now for e c aE, take any A E Lh(e) and then any iv E Vh such that f.v = A 
on e. Solve the problem 

A( = V * V - AE(V V) + AOE\e(f> * I) in E, 

V(ov==v*v onaE\e, 
Vq .v=O one, 

and again set v = v - rlhVo E Vh . Then (3.1) and (3.2) imply that YALh, = 0 
on e. 

By the unisolvence of the degrees of freedom, since C E Mh, we conclude 
that =O. o 

4. EQUIVALENT SPACES FOR TRIANGULAR MIXED METHODS 

We are now in a position to construct some nonconforming spaces that give 
rise to projection finite element methods that are equivalent to standard mixed 
methods. We begin by generalizing the results of Arnold and Brezzi [1] to 
the known triangular methods. These mixed spaces satisfy the conditions of 
Theorem 4, SO it remains only to define over a triangle T a space Mh (T) of 
the correct dimension and prove the unisolvence of (DF). 

Let Pk(E) denote the space of polynomials of total degree less than or equal 
to k defined in E. We will make use of the barycentric coordinates ?i, i = 
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1, 2, 3, defined on T to be the unique affine functions that take the value one 
at vertex i, and the value zero on the opposite edge. Finally, for any edge e, 
let Pk (e) denote the L2(e)-orthogonal complement of Pk (e) in Pk -(e) (i.e., 
the span of the Legendre polynomials of exact degree k). 

4.1. The Raviart-Thomas spaces on triangles. These spaces [21] are defined 
for each k > 0 by 

Vk (T) = (Pk(T))2 ((x, y)Pk(T)), 

Whk(T) - Pk (T)? 

Lk(e) = Pk(e). 

First let us recall what is already known for the lowest-order space. An Mh 
(of dimension 4) for this space is [1, 11] 

Mh(T) = PI (T) ED Bh(T), 

where we define Bh(T) to be the span of either the P3-bubble function, 

4T(x, Y) = ?1(X, y)Y2(x, y)Y3(x, y) Y 

which vanishes on each edge, or the P2-bubble function, 

42x,y = 2 - 3(f2(, y)+ 2( y) + 4( x, y)), 

which vanishes at the two quadratic Gauss points on each edge. 
For 4 E Mh, we can write 4-=X + 42 for E P P(T) and 2 E Bh(T), and 

then the degrees of freedom for the element are normally given as the value of: 

(i) T(x) dx; 
(ii) j at the midpoint of each edge e c a T. 

(Note that if Bh(T) = span{fl3}, we may replace 4j by 4 in (ii).) An equiva- 
lent set of degrees of freedom can be given by the value of (i) and 

(ii') j (x) da(x) for each edge e c a T; 

(ii) and (ii' ) are equivalent since midpoint quadrature is exact for linear func- 
tions. These degrees of freedom are (DFI) and (DF2), and their unisolvence is 
known. 

For the family as a whole, we define 

Mhk (T) {VE Pk+3(T):vleEPk+l(e)} if k is even, 

{v E Pk+3(T) :vje E Pk(e)e0Pk+2(e)} if k is odd. 

We first show that Mhk(T) has the correct dimension. The dimension of 
Pk+3(T) is I (k + 5)(k + 4), which is exactly six more than dim(Wh(T)) + 
3dim(Lh(e)) = -(k+8)(k +1). For simplicity, assume that k is even; the odd 
case is similar. For any 4 E Pk+3(T), we can write that 

{(X) = L ai jiI I (x)f 
0O<i+ j:k+3 
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for some constants ai,j. If now 4 E Mk (T), then X/e E Pk+l(el) implies that 
ao,k+3 = aO,k+2 = 0, and Xie2 E Pk+l (e2) implies that ak+3,o = ak+2,o = 0 . On 
e3, e2 = i - , so 

XIe3 = j ai,ej(l "( )- ) E Pk+l (e3) 

O<i+j<k+3 

implies that 

Z (-l)jai,j = 0 and E (-l)iai,j+ E j(-l)i-ai,j=0. 
i+j=k+3 i+j=k+2 i+j=k+3 

These six conditions are clearly independent, so Mk (T) has the correct dimen- 
sion. 

Now we consider the unisolvence of (DF). Suppose that 4 E Mk(T) has 
degrees of freedom (DF) equal to zero. The (DF2) imply that on each edge 
e, , is a Legendre polynomial of degree k + 1 if k is even and k + 2 if 
k is odd, i.e., of odd degree. Since the odd-degree Legendre polynomials are 
odd functions, traversing A T, we see that 4 must vanish identically on the 
boundary. As a consequence, we write that i = ?1 2e3w for some w E Pk(T). 
Now (DFI) shows that (ee2e3W, W)T = 0, which finally gives that 4 = 0. 

We remark that if k is even, we obtain the nonconforming method of Arnold 
and Brezzi [1]. 

4.2. The Brezzi-Douglas-Marini spaces on triangles. These spaces [8] can be 
defined for each k > 1 by 

Vk (T) - (Pk (T) )2, 

Wk(T) -Pk- (T)X 

Lk (e) = Pk (e). 

Let us define 

Mk(T) V{ { e Pk+2(T): vie E Pk+l(e)} if k is even, 
{V E Pk+2(T) v le E Pk(e) e Pk+2(e)} if k is odd. 

Since diim(Pk+2(T)) = I (k + 4) (k + 3) is exactly three more than dim(Wh (T)) + 
3dim(Lh(e)) = 4(k + 6)(k + 1), an argument as above shows that Mh (T) has 
the correct dimension. The unisolvence of (DF) is also shown as above. 

5. EQUIVALENT SPACES FOR RECTANGULAR PARALLELEPIPED MIXED METHODS 

We now construct some nonconforming spaces that give rise to projection 
finite element methods that are equivalent to standard mixed methods defined 
over a rectangle or rectangular parallelepiped R c Rn, n = 2 or 3. Again the 
mixed spaces satisfy the conditions of Theorem 4. 

For simplicity, assume that R = [- 1, 1 ]n . We will make use of the Legendre 
polynomials pm(xi) of degree m defined on the interval [-1, 1]. Recall that 
Pk (R) is the space of polynomials of total degree less than or equal to k defined 
in R, and let Qk,, ,m(R) denote the space of polynomials of degree less than 
or equal to k in xt, , in x2, and m in X3 (where m and X3 are absent if 
n = 2). 



MIXED METHODS AS NONCONFORMING METHODS 953 

5.1. The Raviart-Thomas spaces on rectangles. These spaces [21] are defined 
for each k > 0 by 

Vh (R) = Qk+ 1, k (R) x Qk, k+ 1 (R), 

Whk(R) = Qk, k(R), 

Lk(e) - Pk(e). 

We define 

Mhk(R) = Qk+2,k(R) Qk,k+2(R)= Qk,k(R)e Ak(R)e Bk(R), 

where 

(5.la) Ak(R) = {Z[ai,lPk+1(Xl)+ai,2Pk+2(xl)lPi(x2):ai,j ER}, 
i=O 

(5. lb) Bk (R) = { Zpi(xi)[bi, lPk+I(x2) + bi,2Pk+2(X2)]: bi, X R}. 
i=O 

Note that dim(Ak(R)) = dim(Bk(R)) = 2(k + ), so it is trivial to verify that 

dim(Mhk(R)) = dim(Whk (R)) + 4dim(Lhk(e)). 
We need to show that the degrees of freedom (DF) are independent. Assume 

that the (DF) are zero for some 4 E Mhk (R) = Xl + 2 + 3, where (l E Qk ,k(R), 

42 e Ak(R), and 6 E Bk(R). By the orthogonality of the Legendre polynomi- 
als, (DF1) is zero for Ak(R) and Bk(R), so (DF1) implies that (l = 0. On the 
two sides where xl = ?1, (DF2) for Bk(R) is zero, but for Ak(R) we have 

k I 

E |[ai, lPk+ l (?l) + ai, 2pk+2 (?+1)]pi (x2) (Px2) dx2 = O, V?P E Pk ([-I, 1 ]), 

i=O -1 

and so ai, lPk+1(?l) + ai,2pk+2(?l) = 0 for each i. Since the Legendre poly- 
nomials are alternately even and odd, we conclude that ai, = ai,2 = 0 for 
each i, i.e., 42 = 0. Similarly, on the sides where x2 = ?l, we conclude that 

= 0, and so 4 = 0 and we have our unisolvence. 
We omit the proofs of unisolvence below, since they are similar to that given 

above. 

5.2. The Brezzi-Douglas-Marini spaces on rectangles. These spaces [8] are 
defined for each k > 1 as 

Vhk(R) - (Pk(R))2 e span{curlX4k+x2, curlxI4Xk+ }, 

Whk(R) Pk_-(R), 

Lk(e) = Pk(e), 

where curl w = (-Ow/Ox2, Ow/IxO) . We define 

M**(R) = Pk-I(R) e Ak(R) E B(R), 

where Ak(R) and Bk(R) are defined above by (5.1). 
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5.3. The Brezzi-Douglas-Fortin-Marini spaces on rectangles. Also called re- 
duced Brezzi-Douglas-Marini spaces [7], they can be defined for each k > 0 
as 

Vhk(R) - {D E Pk+I (R) the coefficient of x+1 vanishes} 
X {( E Pk+I (R): the coefficient of xlk+I vanishes}, 

Whk (R) = Pk (R), 

Lk (e) = Pk(e). 

Now we define 
Mhk (R) = Pk (R) e Ak (R) e Bk (R). 

Again, Ak(R) and Bk(R) are defined by (5.1). 

-5.4. The Raviart-Thomas-Nedelec spaces on rectangular parallelepipeds. These 
spaces are the three-dimensional analogues of the Raviart-Thomas spaces on 
rectangles, and they are defined [19, 21] for each k > 0 by 

Vhk(R) = Qk+ 1,k,k(R) X Qk,k+ 1,k(R) X Qk,k,k+I (R), 

Wh(R) Qk,k,k( R) 

Lh (e) = Qk ,k(e). 

We define 

Mk(R) = Qk+2,k,k(R) ? Q,,k2R Mhk()=Q+,kk(R Qk, k+2, k (R) (D Qk, k, k+2 (R) 

= Qk,k,k(R) e3 Ak(R) e Bk(R) ED Ck(R) 

where 
k k 

Ak(R) = { Z Zai,.j, lPk+I (X1) + ai,j,2pk+2(xl)]Pi(X2)P1(X3): a1,1j, e 
=0 j=0 

k k 

Bk(R) = { E Z p(xi) [bi,, IPk+1 (X2) + bi, j, 2Pk+2 (X2)Ijp(X3) bi, j, I E R 

i=o j~o' 
k k 

Ck(R) = { ZZPi(X)Pj(X2)[Cikj,lPk+l(X3) + Ci, j,2Pk+2(X3)] Cij,, E R}. 
'i= j=0 

5.5. The Brezzi-Douglas-Duran-Fortin spaces on rectangular parallelepipeds. 
These spaces [6] are the three-dimensional analogues of the Brezzi-Douglas- 
Marini spaces on rectangles. They are defined for k > 1 by 

Vhk(R) = (Pk(R))3 E span{curl(O, 0, 4 +1x2), curl(O, XIXk+1 0 ), 
curl(xk+1 x3, 0, 0), curl(O, 0, xlxi1lxk i), 

curl(O, xli+Ix2ki ix3, O), curl (x ki 2 ixx+I , 0, O)1, 

Whk(R) =Pk-(R) 

L*k(e) = Pk(e). 

We define 
Mhk (R) - Pk- I(R) e Ak (R) e Bk (R) e Ck (R), 
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where 
(5.2a) 

Ak (R) = { [ai,, lPk+ I (X1) + ai, j, 2Pk+2 (xl)Pi (x2)pj (x3) ai, j, j E R 

O<i+ j<k 

(5.2b) 

Bk(R) = { Z m(xl)[bi,j,IPk+l(X2) + bi,j,2Pk+2(X2)]Pj(X3) bi, j, e E R 

O<i+j<k 

(5.2c) 

Ck (R) = { Pi(Xl)Pj (X2) [Ci, j, lpk+ (X3) + Ci, j, 2Pk+2(X3A)] Ci j, E R} 

O<i+j<k 

5.6. The Brezzi-Douglas-Fortin-Marini spaces on rectangular parallelepipeds. 
These spaces [7] are also called reduced Brezzi-Douglas-Duran-Fortin spaces, 
and they can be defined for each k > 0 as 

( ~~~~~~~~k+1 
Vk(R) = E Pk+I(R): the coefficient of IXk+l ixi vanishes} 

x {o e Pk+l (R) :the coefficient of E k+1 -X aihs i=O 

x {o E Pk+l (R) : the coefficient of EXk+l-iXi vanishes 
i=O 

Whk (R) - Pk (R), 

L*k(e) = Pk(e). 

We define 
Mhk (R) = Pk (R) e Ak (R) E Bk (R) D Ck (R), 

where Ak (R), Bk (R), and Ck (R) are defined in the previous subsection by 
(5.2). 

6. IMPLEMENTATION OF THE LOWEST-ORDER RAvIART-THOMAS METHOD 
ON RECTANGLES 

We now concentrate our attention to the lowest-order Raviart-Thomas spaces 
over rectangles [21] (or equivalently the lowest-order Brezzi-Douglas-Fortin- 
Marini spaces [7]), since these are widely used in practice. In this and the 
following three sections, let Q be a planar domain, let ?h be a family of quasi- 
regular partitions of Q into rectangles oriented along the coordinate axes with 
maximum diameter h, and let a be diagonal. For simplicity of exposition, 
assume that a is a scalar, ['2 = 0, and g = 0. 

The lowest-order Raviart-Thomas spaces [21] are 

Vh = {V: VIR = (a I + aR x, aR + a'y), a E R, VR E ?; 
v * n is continuous at the interelement edges of h }, 

Wh={w:wlRisconstant, VREh}, 

Lh = {U: /YIe is constant, Ve E Oh}. 
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A general, equivalent, nonconforming method is defined above in ?5.1 (and also 
in ?5.3) for the space 

Mh={ :IR=aR +aRx+ay+a4x2 +ay2, a E R E h; 

if RI and R2 share an edge e, then jlIaR, ds = jIaRR2 ds; 

and J J|n X ds=O}. 
Rnan 

It will prove advantageous to understand some structure and properties of Mh. 
Let the P2-bubble function in R E Ah be defined by 

.BR(X, Y) = 4 - 12 ((x - XR )2 + (y - yR )2) ( 2 + h2 
Rx Ry ' 

where (XR, YR), hRX, and hRy are the center, x-length, and y-length of R, 
respectively. This bubble function vanishes at the two quadratic Gauss points 
on each edge (recall that the Gauss points on [-1, 1] are at ? 1/4,3). Define 
the nonconforming spaces 

Nh = {: =IR =I +a2X+ a3 y + a4(x2 _ y2), aR ER, VR E Fh; 

if RI and R2 share an edge e, then jIaR, ds = j49aR2 ds; 

and J Rn on ds = O}, 

Bh = 4 IR = aS59R(X. Y), aS E R5 VR E ?h} 

Namely, Nh is a standard nonconforming space and Bh is the set of P2-bubble 
functions over ?h. 

Two-point Gaussian quadrature is exact on cubic functions. Therefore, we 
can rephrase the integral continuity constraint in Nh (or in Mh ) to say that 
on interior edges, the sum of the jump discontinuities in 4 at each of the two 
quadratic Gauss points is zero, and on external boundary edges, the sum of 4 
at the two quadratic Gauss points is zero. 

Lemma 1. The following three relations hold: 
(i) For any R E ?h, VMh(R) = Vh(R); 

(ii) Mh = Nh e Bh; 
(iii) For any R E ?h, (VW, V)R = O, VX E Nh(R), E Bhb(R). 

Note that (iii) holds if " Vt " is replaced by any constant vector, since these 
are contained in VNh(R). 

Proof. Relations (i) and (ii) are trivial. Relation (iii) is a type of orthogonality. 
It can be seen after integration by parts, 

(VW, VC)R = -(AX, C)R + (VW. V, C).R = 0, 

since K = 0 and Vc * v is constant. o 
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If a is not diagonal, then we cannot easily exploit (i) and (iii). That is why 
we have assumed that a is diagonal. In fact, we also need that the coefficients be 
piecewise constant. Fortunately, we can use a minor modification of the usual 
mixed method (2.1) consisting of projection of the coefficients into the space 
Wh . In that case, (i) and (iii) will prove to give us considerable computational 
savings, without any loss of accuracy (see ?7 or [10,14]). 

We need to maintain coercivity, so explicitly assume a somewhat stronger 
version of (1.2): for any v E (L2()) and w E L2(), 

(6.1) (cahv, v) + (bhw, v) + (dhw, w) > K{IIIVIIL2())n + (dhW , w)} 

for some constant K > 0 independent of h, where axh = 9wa', a bh = 9wh b, 
and dh = 2Whd. (This follows from (1.2) if a and d are sufficiently large 
compared to b, the coefficients are sufficiently smooth, and h is sufficiently 
small.) 

The mixed method for (1.3) is then to find (aJh, Uh) E Vh x Wh such that 

(6.2a) (VCrah, w)+(dhuh, w) = (fh, w), VW E Wh, 

(6.2b) (aihah, V)-(Uh, VV) + (bhuh, V) = (Ch, V), Vv E Vh, 

where Ch = .9Whc and fh = &Wh hf. It is well known that uh approximates 
u only to order one; therefore, various postprocessing techniques have been 
defined to improve the approximation. Let us define the following scheme (cf. 
Stenberg [22]): Find ius E Mh such that in each R E ?, 

(6.3a) (Uh-Uh, I)R =, 

(6.3b) ((Vih + bhuh -Ch) + ahh, V)R Mh(R). 

The equivalent nonconforming projection finite element method for approx- 
imating ( 1.1) has its coefficients modified accordingly. We find Vh E Mh such 
that 

Z (<(7Vh+bh3-whWh-Ch), VC)R +(dh Whwh, ) 
(6.4) RE?h 

=(fh, ), V EMh. 

Theorem 5. The solutions of (6.2)-(6.3) and (6.4) have the relationship 

(6.5) ah =-ah (V wh + bh3wh Yh-Ch), 

(6.6) Uh =?5Wh Vl, 

(6.7) Uh = Vlh 

Proof. Since VMh(R) = Vh(R), ?Av, is unnecessary in (6.4) and (6.5), and so 
(6.5) and (6.6) follow from the general theory (for eachjixed gh, We haVe fixed 
coefficients). Since Vh satisfies (6.3), uniqueness of frh implies (6.7). O 

We give now a simple formula for computing the numerical flux ah from an 
only slightly modified nonconforming method, (6.8) below. 

Theorem 6. For each R E G#, let 

YR = (dh3, gflR - a 
- 

R) 
(OR = 1 -dhyYRAWhR, 
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and on R, define 

bh = (ORbh, Ch = - byRfhY9Rwh AiR, 

dh = w)Rdh, fh = WoRfh. 

Let Zh E Nb be the solution of 
(6.8) 

E(a- (VZh + bhyWh Zh- eh), V4)R + (dh-9WhZh,)= (fh, ) VX E Nh, Z 

E Vg 
Nb 

REth 

and 4h E Bh be given by 

(6.9) 4h(X, Y)IR = YR (fh -dh-9WhZh)IR PR(X, Y). 

Then Vh E Mh is the solution of (6.4) if and only if ylh = Zh + h. Moreover, 
ah at a point (x, y) E R E ?h is evaluated by the formula 

(6.10) ah(X,Y )=-a{ Vzh(X,y).+AbhW ZhI R-Ch 

+ YR(fh - dh-9WhZh)IRVfiR(X, y)}. 
Proof. We begin by noting that 0 < (R < 1, and (OR -+ 1 as h -O 0. In 
fact, since a, d, and Q are bounded, (OR > co* > 0 for some constant W. 
independent of h. As a consequence, (6.1) holds with bh and dh replacing bh 
and dh, respectively. Therefore, (6.8) is well posed. 

We exploit the orthogonality (iii) of Lemma 1 to obtain the theorem. Let Vh 
be the solution to (6.4) and let Y'h = Zh + Ch for some Zh E Nh and Ch E Bh . 
We must show that (6.8)-(6.9) hold. 

Restrict to a test function 4 E Bb in (6.4), and use orthogonality to see that 
(6.11) 

(ah VCh, VOR + (49WhCh, 4)R = (fhV-dhXZh, 4)R, V4 E BhbIR, R E Fh 

Integrate by parts the first term on the left-hand side to obtain that 

dhbWhh --c AC4h = (fhb-dbhW? Zh) JR in each R E h, 

since the boundary term is zero by appeal to Gaussian quadrature. It follows 
from the definition of Bh that 4h is given by (6.9). 

In (6.4), restrict now to 4 E Nh and use (6.9) and orthogonality to obtain 
(6.8) for Zh, since in each R E th , 

(6.12) 5 Wh W hb+YWhWhh 
= 

z Wh + YR (fh -db Wh WhZh)AhfiR 
= OC)R-9WhZh + YRfb9AW fiR-R 

Conversely, we obtain (6.4) from (6.8)-(6.9) and unisolvence. 
Finally, from (6.5) and (6.12), 

(6.13) (rh = -a-'{VZh + bhb[w RYWZh + YRfhbAWhfR]I-Ch + V4h}, 

and so (6.10) follows. o 

We end this section with three remarks. First, if uh is needed, it is given 
by (6.12) (recall (6.6)). However, since Vh approximates u to a higher order 
of accuracy than Uh, as shown in the next theorem, the use of (6.12) seems 
inadvisable. Secondly, if the Lagrange multipliers for the mixed method are 
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desired, they are the average value of V/h or Zh on each edge. Thirdly, if R is 
a square and b = c = d = 0, (6.10) is simply 

(6.14) ah =-a 
- 

VZh + I3yWhf IR (X-XR, Y-YR), V(X, Y) E R E th, 

which is the same form as in the case of triangular mixed finite elements [18, 
11]. 

7. ERROR ESTIMATES 

Denote by 11 I 1I1,s the norm of Hi(S), where we omit j if j = 0 and S 
if S = U. We have the following theorem. 

Theorem 7. If u and a solve (1.1), Uh and ch solve (6.2), and V/h solves (6.4), 
then there is a constant C independent of h such that 

(7.1) 110 - Ohll + IIU - Uhll < Q(IIfII, jjalj wI.(n), llbll 1, llcllI) h, 

(7.2) 11'7 * (a - ah)JI < ?11f(IIfI , ail W'j. 0(n), llbll, llcIl 1) h, 
(7.3) lIS'Wh u - Uh II < 1(IIfII , 1 jaIl w' 0(n), Ilbil Wjxbj o(), llcIl 1 dll II .d jw (Q)) h2 

1/2 

(7.4) (1 < l1Vu - V/hII) 1 /2 ) < C(IIfI al lw' .oo(Q) lb l1 llc l' Xj) h, 

(7.5) Ilu - /hll < ? jC(IIfjj, 1 jajjw, 0(n) jjbjjw x(n), llcll , jjdjjw .00(Q)) h2. 
Proof. Results (7.1)-(7.3) are essentially known [14]. They can be obtained by 
a careful application of the techniques of Douglas and Roberts [ 1 5]. To handle 
the modified coefficients, we must recognize that for s = 0, 1 and 1 < j < xc, 

(7.6) JjPWhl - 0jjW-S J(Q) < Cl/y1 1W'i(Q) hl+s. 

We also use elliptic regularity to obtain that 

lIU112 < CllfIIo and JIV * ull I < Cllf I1 

and a duality argument to obtain (7.3). 
Results (7.4)-(7.5) follow from the use of an abstract theorem concerning 

error estimates between u and V/h (see [ 1 1, Theorem 2.2]). However, a simpler 
approach is to note by equivalence from (6.3) that 

(7.7) (u- h, W) = (PWhU-Uh, W), VW E Wh, 

(7.8) (V(u- h) + bh(U-Uh) + ah(a-ah), V4)R 
= ((bh-b)u + c-ch + (ah-a )a, VE)R, V/ E Mh(R) and R E .h. 

Estimate in a straightforward way the second elliptic equation to obtain (7.4) 
from (7.1) and (7.6). Use (7.7) to obtain that 

IIU - VhIIO,R < C{IIV(u - Vh)11o,Rh + IIWhU - UhIIO,R} 

and then apply (7.3) and (7.4) to finish the proof. 5 

8. A MULTIGRID SOLUTION ALGORITHM 

In this section we develop a multigrid algorithm for the nonconforming 
method (6.4) and the mixed method (6.2). We need to assume a structure 
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to our family of partitions. Let ho and G*o = S0 be given. For each integer 
k > 1, let hk = 2-kho and hk = gk be constructed by connecting the mid- 
points of the edges of the rectangles in gk- I . In this section (and the appendix) 
only, we will replace subscript hk simply by subscript k. Since the intergrid 
transfer operators below do not preserve either the energy or the L2-norm, as 
noted in [3], the standard argument of convergence for V-cycles does not carry 
over directly. So, only a W-cycle, full multigrid algorithm will be defined here. 
Since mixed methods are designed to approximate well the flux variable a, and 
since it is of primary interest in many applications, we develop the multigrid 
algorithm with emphasis on the calculation of this variable. We assume in this 
section that b= = c = . 

With this in mind, we now take advantage of the factorization of the system 
(6.4) into (6.8) and (6.11). For each k, let 

ak(c4,4) = Z (R1V4, V;)R + (dkwk4, C 
REK 

ak4 a)= E W ( Ve V)+ (dkYwk4,C), 84, CEMk. 
RE?k 

Then (6.8) asks for Zk E Nk such that 

(8.1) ak(Zk, )=(fk, 4), E Nk, 

and (6.11) asks for Ck E Bk such that 

(8.2) ak(4k, 9) = (fk -d9wkzk, k ), V EBk. 

For k = 1, 2, ... , solutions to problem (8.2) can be obtained directly, since Bk 
has no continuity constraints across element boundaries; therefore, we define a 
multigrid procedure for (8. 1) only. 

Standard inverse estimates yield that the spectral radius of the operator ak 
on Nk x Nk is bounded above: there exists a constant C1 independent of k 
such that 

(8.3) spectral radius of &k on Nk x Nk < Clh,-2 

Note that, since Nk-l ? Nk, these spaces are not nested. It is well known 
that natural injection operators do not work for nonnested finite element spaces. 
Thus, we need to introduce special intergrid transfer operators. Following [4], 
we define the coarse-to-fine intergrid transfer operators Ik4_1 NkI l Nk as 
follows. If 4 E Nk1I and e is an edge of a rectangle in Fk, then Ikk_4X E Nk 
is defined by 
(8.4) 

( if e c A2, 

1f|Ik <:da=| 1Jfe Xdr if e aRforanyR E ,k-l 
le I k-1 Iel { fe (JRIR + XIR2) da} if e c aRl n OR2 for some 

RI, R2 E Fk-l1 

The multigrid algorithm for obtaining approximate solutions Zk E Nk to 
problem (8.1) is given in terms of the kth-level multigrid step, defined below, 
which yields the result MG(k, zk, fk) E Nk as an approximate solution to (8.1) 
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from the initial guess zk E Nk . Let r be a positive integer independent of k, 
which denotes the number of multigrid iterations in (ii) below. The overall 
multigrid algorithm is defined sequentially for each k as follows: 

(8.5a) For k = 1, z^l = MG(l, *, fi) is obtained by a direct method; 
(8.5b) For k > 2, Zk is obtained recursively by 

(i) Zk = Ik-Zk_1, 

(ii) Zk = MG(k,zl,fk), 1 < < r 

(iii) Zk = Zk 

The multigrid step is defined for k = 1 and F E Nj' as MG(1, *, F) = I 
where z1 is obtained directly as the solution to 

For k > 2, Z E Nk, and F E Nk, 
(MG) MG(k,z,F)=S(k,z,F)+C(k,S(k,z,F),F) 

is calculated by means of the smoothing step 
(S) S(k, go, F) = g,, , where m is the number of smoothing steps and the 

approximation gj E Nk, j = 1, 2, ... , m, is defined recursively from 
the initial guess go by the equations 

(gj-gj-l, ,) C-' 2h((F, ,)-ak(gj- 5, ,), E E Nk, j .. 1, 5,m, 

and the correction step 
(C) C(k, gm, F) = Ikk_4qp, where qj E Nk-1 X j = 0, ... p (p = 2 or 

3), is defined recursively from qo = 0 by 

qj = MG(k - 1, qj-l, F), j = 1,..., p, 

(F,4) = (F 4Ikk-l4)-iik(gm, Ik~-l4), 84fENk-i- 

From (6.10), the multigrid approximate solution (k to (k is defined in 
RE ?k by 

(8.6) =-ak1{VZk + YR(fk-dk-?AWkZk)IRVIlR(X XY)}. 

The standard argument [2, 3, 4] for the convergence analysis of the multigrid 
algorithm (8.5) applies here if we prove that Ikk_l is bounded and reduces to 
the natural injection on continuous bilinear functions. Although the second 
fact is false, it is true after a modification of the definition of Ikk4 given in the 
appendix (the modified definition is equivalent to the original on Nk-l ). The 
first fact together with the following lemma will be shown in the appendix. 

Lemma 2. If m and r in the multigrid algorithm are sufficiently large, there is 
a constant C(IlallwIO(Q), lldI lw, (n)) independent of k such that 

/ \ ~~~~~~1/2 
(8.7) IIzk -lZkll + ( IV(zk - Z-k)IIR) 1 ChkIlfII, 

RE(I k 

(8.8) 11 Zk - Zk 11 < Ch Il f |11 
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Theorem 8. If m and r in the multigrid algorithm are sufficiently large, then 
there is a constant C(IlalIwi,o(Q), IIdI'IwI,_(n)) such that 

(8.9) Il|k - -kII < ChkIIfII 
(8.10) II1--'kII < ChkIlfll. 
Proof. Equations (6.10), (8.6), and (8.7) imply equation (8.9), since YR - (h2) 
and IIVIBRII = (^h-1). Equation (8.10) follows with (7.1) (the bound is pro- 
portional to IlflI because c=0). = 

It can be seen that the total work performed in obtaining zk is O(nk) [2]; 
thus, the cost to compute ak is also O(nk). 

Since ak belongs to 

Vk = {V : VIR = (a +ax,aR +ay), a E R, VR E k} 

but not necessarily to Vk, following [4], we introduce the averaging operator 
Ak: Vk -f Vk . Let e be an edge of R E ?k and ne be a unit outer normal to 
e. For v E Vk, if e c aQ, then (Akv * )le = (vIR V) le; if e is the common 
edge of R1 and R2 E ?k, then 

(AkV * VR,)Ie = ((V IR1 V'Ri)Ie + (VIR2 l- Ri)Ie). 

Thus, Ak restricted to Vk is the identity. The next result follows from this 
definition and Theorem 8. 

Theorem 9. There is a constant C such that 

IIAkvII < ClIVIl, VV E Vk. 

Moreover, under the conditions of Theorem 8, there is a constant 

C(IIaII w,,.?(Q), lldll wl??(Q)) 

such that 

lU/ - AkJk || < Chk Ilf II, 

Ila - Ak/dk || < Chk IIf I1 . 
The final result in this section concerns Yki, defined by (6.4). Recall that Ck 

is the solution to (8.2), and define 

(8.11) Vk =Z/k+ Ck 

Since V-k - - Z/c, we have the following from Lemma 2 and (7.5). 

Theorem 10. If the assumptions of Theorem 8 are satisfied, then there is a con- 
stant C(IIaII w. (n), IIdI IIw (n)) such that 

/ \ ~~~~~~1/2 
IIVk - V/k II + ( II V(Vk - Vk)IIR) < Chkllf II 

RE^j 

Moreover, if fe H'(Q), 

IIVk - 1k < Ch IIflIl 

IIu - Vk| < Ch 2 IlfI1 
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An averaging process similar to that for (Jk can be defined for 'k. The 
multigrid algorithms developed in this section for the rectangular elements can 
be extended to the lowest-order triangular elements and the results in Theo- 
rems 8-10 remain valid. 

9. EXTENSION TO RECTANGULAR PARALLELEPIPEDS 

Let now Q be a polygonal domain in R3 and ?h be a decomposition of 
Q into rectangular parallelepipeds having maximum diameter h and oriented 
along the coordinate axes. Again assume that a is a scalar, F2 = 0, and g = 0 . 

We consider the lowest-order Raviart-Thomas-Nedelec space [19] Wh x Vh 
defined over ?h (equivalently, the lowest-order Brezzi-Douglas-Fortin-Marini 
space [7]). 

Let Mh be the nonconforming space introduced in ??5.4 and 5.6 above. We 
obtain Lemma 1 in ?6 provided that we redefine 

Nh = {: R =aI+aR x +a3y + aZ+ a5(x2 _y2) +a(X2 Z2), 

a' E R, VR E ?; if R1 and R2 share a face e, 

then j4IR ds= 4IR2 ds; and I I|n XIds=O}, 
e e d~~~~Rnan 

Bh=f{: IR=a7RIR(X, y), a7ER, VREhJ}, 

where now the P2-bubble function in each R E 9'h iS 

,R(X,5 Y, Z) 5- 1 2 R)+ (Y + h2 ) 
" Rx Ry Rz 

which is equal to zero at the four tensor product quadratic Gauss points on each 
face. 

With these modifications, we again have the equivalence between the solu- 
tions of (6.2)-(6.3) and (6.4) in the sense of Theorem 5. Theorems 6 and 7 
hold as well; moreover, if Fh, is given and each 'hk+ is a regular refinement 
of ehk into eight times as many elements, then the results in ?8 remain valid. 

10. EXTENSION TO SIMPLICES 

Let now ?h be a partition of Q into simplices, and again assume that a is 
a scalar, F2 = z, and g = 0. The lowest-order Raviart-Thomas-Nedelec space 
Vh [21, 19] defined over 9'h is given by 

Vh = {V VIE = (aI + 4X , a3+a y, a42+4z) ai ER, VE E h; 
v * n is continuous at the interelement faces of ?h }, 

Wh = {W: WIE is constant, VE E Fh}, 

Lh = IlI: 8e is constant, Ve E a?hC 

We define the nonconforming space Nh by 

={c cIE = a +a + aY+aEZ, aEIR, VEEh; if El andE2 

share a face e, then j4oE, ds = jIOE2 ds; and J Ian ds = 0}. 
e d3EnocQ 
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For each E E Oh, let i, 1 = 1, 2, 3, 4, denote the barycentric coordinates 
of a point in the simplex. These functions are the unique affine functions that 
take the value one at vertex i, and the value zero on the opposite face. The 
P2-bubble function takes the form 

I,BE (X, y , z) = I - 2 (i2 + e22 + 132 + e42), V(x, y, Iz) E E. 

This quadratic bubble function has vanishing integral over each face. Let 

Bh = {E,: 4IE = a5lE, aE ERI} 

and Mh = Nh E Bh . This Mh satisfies the conditions of Theorem 4 (in partic- 
ular, (DF) are unisolvent). 

We have an analogue of Lemma 1. 

Lemma 3. The following two relations hold: 
(i) For any E e h, VNh(E)c V*(E); 

(ii) For any E E ?h, (VW, V OE = O, V8 E Nh(E), 4 E Bh(E) 

Proof. For (i), VNh(E) = (Po(E))3 c Vh(E). For (ii), integrate by parts and 
use that AX = O. O 

To exploit this orthogonality, we will assume as in ?6 that the coefficients are 
projected into the space Wh. So assume (6.1) and take (6.2). As an analogue 
of (6.3), we define i,h E Mh such that on each E, 

(l0.la) (Uh-Uh, CEV=00, 

(10.1b) ((5tJVhh + hhC)+ l(h'V4E=?4 E Mh (E). 

(The existence of ih follows easily from Lemma 3). 
Note that for any 4 E M*, we can write 4 = Zh + C, where Zh E Nh 

and kh E Bh . Then ?AV4h = VZh + YhV Vh. The equivalent nonconforming 
projection finite element method for approximating (6.2) is to find Vh E Mh 
such that 

Z (a (9,vhVv/h h+b9Wh wh-k-Ch), V4)E + (dk3wh-vk, V ) 
(10.2) EE h 

= (Jh5,) V4E Mh- 

Then Theorem 5 holds, provided (6.5) is replaced by 

(10.3) ah = -ah (&A5vhV Yh + bh'Wh Vlh - Ch)k) 

Theorem 6 also holds, provided that now 

YR = (dh9AW*'whf3R - a*VN7. 

and (6.10) is replaced by 

(10.4) cTh(x,y) =a-c1X { Vzh(X,Y)+bhzkIR-Ch 

+ YR (fh -dhyW Zh) |R-OVh VAR (X, Y)}. 

The convergence result in ?7 also holds. In the case of equilateral simplices, 
this can be seen as before since then VBk(E) c Vk(E) and the projection 
operator Av)h in (10.3) can be removed. In the general case the convergence 
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result can be shown using the ideas given in [4] (that is, we show that IIvVhVAII 
and IIV II are equivalent norms for 4 E Nh, and we use the interpolant of u 
into Nh as an intermediary). Finally, results analogous to those in ?8 are valid. 

11. EXTENSION TO PRISMS 

Let now Q be of the form Q = G x [0, 1] with G c R2 and ?h be a 
partition of Q into prisms with three vertical edges parallel to the z-axis and 
two horizontal faces in the (x, y)-plane. Let E = T x (ZEa, ZEb) denote such 
a prism, of height hEz = ZEb - ZEa. Again, Li, i = 1, 2, 3, denote the 
barycentric coordinates of a point in the triangle T. In this section, we again 
assume that a is a scalar, 12 = 0, and g = 0. 

The lowest-order prismatic space Vh [20] defined over gh is given by 

Vh = {V VIE = (aE +aEX, a3 +a 2y, a 4+a 5z), aE E R, VE E ?h; 
v * n is continuous at the interelement faces of ?h }1 

Wh = {w wIE is constant, VE E h}, 
Lh = l,: ,Ie is constant, Ve E agh}. 

The nonconforming space Nh is defined by 

Nh= { IE = al + a X + a3y + a4Z + a (X2 + y 2- 2Z2) a i E R, VE E h; 

if E1 and E2 share a face e, then |IaE, ds = j4IaE2 ds; 
e ~~~~e 

and JEfl, ds=0}, 
dEnacQ 

Bh = {,: IE =a4flE, aE E R}, 

where the P2-bubble function takes the form 

flE(x, y, z) = 3 _ 4(+ 2 + 3)- 2 (Z ZEa ZEb) (X,y,z)EE, 

so that its integral over each face vanishes. Finally, Mh = Nh @ Bh . 
We have Lemma 3 and the results for simplices of the last section hold also 

for prisms. 

APPENDIX. PROOF OF LEMMA 2 

We prove Lemma 2 of ?8 in this appendix. Recall that here b = c = 0. 
From ?6, note that on the kth mesh 

f,R = M(1), Vf,R = (hj 1), APR = &(h 2), 

so 

(AA) LYR h ? Chk and IOR - II < Ch2, 

where C depends only on the bounds for a and d. (In general, without 
further comment, we will assume that the generic constant C may depend on 
IIaIIw1,OC(n) and IIdIIw,,_(n) in this appendix.) Since llfk - fkll < ChIIfII , we 
can replace fk by fk up to the second order in hk . A similar statement holds 
for dk and dk. 
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For each k, define the energy norm 

114|k = (&k (4 ' ))12 

(This is equivalent to the HI (Q)-norm by (6.1) and a Poincare inequality.) 
Standard arguments for the error in approximating (1.1) by a nonconforming 
method are easily combined with arguments to handle the projections into Wk 
in (8.1), so we have that 

/ \ 1/2 
(A2) IIU - Zkll + ( Z IIVu - VzklI) < ChkllfI, 

REg k 

and a duality argument can be used to show that 

(A3) IIu - Zkll < Ch2llflll. 

This last result can also be derived easily from Theorems 6 and 7. Clearly, (6.9) 
implies that 

11SkIIl < Ch2(llfIl + IIPWkZklI), 

and then (6.8) implies that 

lIPwkzkll < Cllfll. 

Theorem 7 and an inverse inequality (see (A8) below) give (A3). We can derive 
(A2) similarly. 

For our analysis, we introduce the conforming finite element space 

Uk = { E C?(Q): 4IR E Ql,,(R), VR E ?k and XIa = O}. 

Unlike the triangular case, Uk ? Nk . Let Zk E Uk satisfy 

(A4) ak(Zk, V) = (fk, V), VV E Uk. 

The usual error estimate for this finite element method is 

(A5) IIu -ZkI|| + hkIIU- ZkII|k ? Ch*IIfIIl 

For each k, let Gk be 

Gk = Nk @ {V VIR = a4xy, al E R, VR E 9k}; 

Gk contains both Nk and Uk. Let mk = dim(Gk). By the spectral theorem, 
there are eigenvalues 0 < A < A2 < ... < Amk and eigenfunctions Xl, 02, , 
bmk E Gk such that 

(0i, j)=5i,j and dk(qi,V)=)Li(qi,V), VVEGk. 

If v E Gk, we write v = Emk cioi and define as in the standard case [2] 

mk \1l/2 

IIIVIIIs,k = 

The Cauchy-Schwarz inequality implies that 

fak(W, v)a < N WotIIII+s,klll llll-=sIk 

for any s E 1R and v), Uw e Gk . Note that I IIV I I 10k = 11 7)11 and 11 17 III , k = IIV Ilk 
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As mentioned in ?8, we now modify the definition of Ik_ so that it behaves 
well on Uk-l . So, let Ik4_ Gkl ' Gk be defined by (8.4) and 

4 4 

(A6) Z(-)iIkk1 vIR(PR,i) = Z(- V)iVIR(PR,i), VR E k, 

i=1 i=1 

where PR, i are the vertices of R, labeled counterclockwise (i.e., so that (-l)i 
changes sign between the two ends of each edge of AR). As an immediate 
consequence of the definition, we have the following. 

Proposition 1. If 4 E Nkl1 and v = xy, then for any R E ?k or Fk-1, 

4 

E(-1 i4IR(PR,i) = 0, 
i=1 

4 

E(-l)iVIR(pR,i) $ 0. 
i=1 

The first result guarantees that Ik4_I restricted to Nkl has the same defini- 

tion as before. The second result guarantees that Ikkf 1 is well defined on Gk . 
We have the following technical lemma as in [3]. 

Lemma 4. There is a constant C independent of k such that 

(A7) C 1IvIIk < Iv1Ilk-i < Clivilk, Vv EC(Q), 

(A8) IIvIIk<ChJjIIvII, VvEGk, 

(A9) |Ik_IV|| < CIIV||, VV E Gk1 
(A0) 1V = V, V E Uk-l, 

(A 1l) lkIk14llk < Cll1llk-1, V E Nk-1 e Uk-l, 

where Ikk_I is defined by (8.4) and (A6). 

Proof. Result (A7) is trivial. The ?k are quasi-uniform by construction, so 
(A8) is a standard inverse inequality. Result (A9) follows immediately from 
the definition of Ik_ I I Since Uk1 c U, c Gk and 4 is well defined, result 
(Al0) follows trivially. 

We easily obtain inequality (Al 1) for 4 E Uk- 1 from the definition of Ikf_ 1 

since Uk1I c CO(Q). Given 4 E Nk_l e Uk_l, define v E Nk_l e Uk1I, 

w e Ukl, and z E Ho(Q) by 

ak-l(4, C) =(V,5 C),5 V; E Nk-I (D Uk-1,5 

(A 12) ak-I (W C) (V 5 C) V; E Uk-1,5 

ak I(Z, 5 ) =V (v C),5 V; E Ho' (Q). 

Note that lz 112 < CII v II by elliptic regularity, and that 4 and w are approxi- 
mations to z with the usual error estimates. It follows from the earlier results 
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that 

IIIkk-14Ik < Ikk'j(4 - W)IIk + CliwIlk 

? C[h-'IlIkk4 - w)II + N - WIIk-l + NIIIIk-1] 

? C[h`k | - wil + lXIIk-1] 

? C[h- (II' - zil + IIW - ZIl) + NIIIIk-1] 

? C[hkIV || + IlXIIk-l]. 

Finally, (A12) gives 

jv 1j2 = Vk (, V) < NIIIIk-1 VjIlk-1 < Ch7 ll|4llk-I jV II 

and (All) follows. 5 

We are in a position to prove that the kth level iteration MG(k, go, fk), 
when applied to the problem of finding z e Nk such that 

ak(Z,)= (fk, ) VX E Nk, 

with the initial guess go is a contraction in the energy norm. Let el = z - gl E 
Nk, 1 = 0, ..., m, where gl is defined as in (S), the smoothing step in (MG). 
Also let e E Nk l and e e Uk-l satisfy 

(Al 3) ak-1(e54)=dk(em5Ikk-j,)5 VE,ENk_15 

(A14) ak(e, v)=ak(em,IkkIv), Vv E Uk_l. 

Lemma 5. There is a constant C such that 

(A15) IlemIlk < CIleOllk, 

(A16) lllemlll2,k < Ch,1 m"lIeollk, 

(A 17) ||e||k-I < CileOllk- 
Proof. Equations (A1 5) and (A1 6) are proven using the ideas in [2]. It follows 
from the definition of the smoothing step (S) that 

(el, 4)=(el-,,4 Cl 1h2 ak(el-1, 4, 84E Nk. 

If eO - E"Mkl cioi then 
mk 

el ci0i(l - C-'h 2A,)I, 1=0,.. m, 
i= 1 

from which, and (A8) or (8.3), we have (A15). From this we can derive (A16) 
as in [2, equation (3.13)]. 

From (A13) and (A15), we see that 

IleIIk_ = ak(em, 4._e) < iIemllkllIkk_iellk < Cllemllkllellk- < ClleoIlkllellk-l 

which yields inequality (A17). 0 

Lemma 6. There is a constant C such that 

lie - elIk- I < Cm-1/2 IleolIk. 
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Proof. Let fo E Gk-l satisfy 

(fO, v) = ak(em, Ik_lv), Vv E Gk-. 

We observe that 

lIfoll2 = ak(em, Ikk-lfo) < IlemrIII2,kIIl4ikLfOIIIO,k < CIIIemIII2,klIfOII, 

so that 
llfoll < ClIIemIII2,k 

Let voEHo'(Q)fnH2(Q) solve 

-V * (aVvo) + dvo = fo in Q. 

Note that, from the definition of fo, (A1 3), and (A 14), e and e are approxi- 
mations to vo in Nk-l and Ukl , respectively. Thus, as in (A3) and (A5), we 
see that 

l|Vo - ellk- < Chk- lllfoll, 
IIVO-ellk < Chk-llfoll, 

and so, with (A16), we obtain 

lle - ellkl < Chk..lllfoll < Chk-llllemlll2,k < CM-1/2eeOjIlk, 

completing the proof. c 

Lemma 7. There is a constant C such that 

hlem - ellk < Cm-/12hleollk. 
Proof. From (A14) and (AIO), we have 

(A18) ak(em-e,v)=0, VVEUk-l. 

By (A16), we get 

hem - eIl = ak(em - e, em - e) 
=ak(em - e, em) 

? illem - elllO,klilemhhl2,k 

? Ch- lm- 1121le, - el 11 leo llk 

Applying a duality argument to (A18), we can easily see that 

Ilem - ell < Chkllem - ellk, 

and our result follows. O 

Lemma 8. There exist y E (0, 1) and an integer m > 1 in (MG), both inde- 
pendent of k, such that 

||z - MG(k, go, fk)lIk < YIIZ - gOilk- 
Proof. We proceed by an induction argument on k. The result is trivial for 
k = 1, even with y = 0. Let us suppose that the lemma is true for k - 1. 
Lemmas 6 and 7 and (Al 1) imply that 

|lz - MG(k, g0, fk)l|k = Item - Ik-lqP llk 

< Ilem - elIk + IIIk_<(e -O)Ik + jIjkk-,(e -qp)lk 

?< C[m-112 HeolIk + lie -qplk-l]* 
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By (Al 3) and the definition of the correction step (C) in (MG), for all 4 e 
Nk-1, 

ak-(e, 4)=a(Z - gn,,Ik- 

= (fk, Ik-1 )-ak(gm, -Ikk- ) 

=(fk, ) 

therefore, qj MG(k - 1, qj1I, fk), and the induction assumption and itera- 
tion gives 

lie - qpllk-1 < yP'lllk-1 

since q6 = O. 
We obtain with (A17) that 

lIz - MG(k, go, fk)Ilk < C[m-1/2Ileollk + yPlIellk-1] < C2(m-112 + YP)leOllk- 

If y E (0, 1) is sufficiently small, then C2yP < y/2 since p > 1, and if m is 
large enough, C2m-1/2 < y/2. For such choices, we obtain the lemma. E 

Lemma 8 says that if the number of smoothing steps m is large enough, the 
kth-level iteration is a contraction. Let Rk denote the standard interpolation 
operator for Uk . If v E H2(Q), then 

(A 19) l|v - RkV ll + hk lV - RkV Ilk < Ch2 IIV 112. 

Proof of Lemma 2. From Lemma 8, (A3), (Al9), and (Al 1), we see that 

Zl-Z ZkkIIk ? Y IIZ-1 Zk-1Ilk 

? Y[llzk - Ullk + llu - Rk_lUllk + lIkk-l(RkIU - Zk)ll|k] 

? Cyr [hkllfll + 1IRk-IU - Zk-1llk-1] 
< Cyr[hk lf || + llRk-1U - Ullk-1 + llU - Zk-1lik-l 

+ IIZk1 - 1Zk-1llk-1] 

< Cyr [hk |hjf + |lZkl - Zk-lilk-1] 

Since z1 - zl= 0, iterating this expression leads to the inequality 

llZk - Zkllk < Chkj+yj3yrhkllfll< 
J=1 

provided that r is large enough so that 2C3yr < I. Hence, 

|| Zk - Zk lk < Chk lIf 1II 
which implies (8.7). 

We prove (8.8) as in [17, Theorem 7.1, p. 162]. First, by (A3) and (A19), 

Zk - 
Ikk-IZk- 11 < CZk- Ull + |U-lRkUl- + Z 1Ikk-I(RkU-Zk-I1) 

? Chk|lf ||l + ||RkU -Zk-1 11 
? Ch.211 flll1 
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Now Lemma 8 yields that 

11 Zk - Zk 11 < II Zk -Ik- Zk1 II 

< Y [lZk- Ikk-jZk-11 + IIkk-(zkk1 - Zk-)1I] 

? 2" [Ch'IIfII1 + IIZk-1 - Zk-11] Z 

so an induction argument yields (8.8). The proof is complete. 0 
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